Nonparametric Function Estimation Involving Time Series
نویسندگان
چکیده
منابع مشابه
Nonparametric Function Estimation Involving Errors-in-variables
We examine the effect of errors in covariates in rionparametric function estimation. These functions include densities, regressions and conditional quantiles. To estimate these functions, we use the idea of deconvoluting kernels in conjunction with the ordinary kernel methods. We also discuss a new class of function estimators based on local polynomials. oAbbreviated title. Error-in-variable re...
متن کاملNonparametric density estimation for positive time series
The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density estimator for positive data from a stationary α-mixing process. We derive the mean integrated squared er...
متن کاملNonparametric adaptive time-dependent multivariate function estimation
We consider the nonparametric estimation problem of time-dependent multivariate functions observed in a presence of additive cylindrical Gaussian white noise of a small intensity. We derive minimax lower bounds for the L-risk in the proposed spatio-temporal model as the intensity goes to zero, when the underlying unknown response function is assumed to belong to a ball of appropriately construc...
متن کاملEstimation of a nonparametric regression spectrum for multivariate time series
Estimation of a nonparametric regression spectrum based on the periodogram is considered. Neither trend estimation nor smoothing of the periodogram are required. Alternatively, for cases where spectral estimation of phase shifts fails and the shift does not depend on frequency, a time domain estimator of the lag-shift is defined. Asymptotic properties of the frequency and time domain estimators...
متن کاملNonparametric HAC Estimation for Time Series Data With Missing Observations
The Newey and West (1987) estimator has become the standard way to estimate a heteroskedasticity and autocorrelation consistent (HAC) covariance matrix, but it does not immediately apply to time series with missing observations. We demonstrate that the intuitive approach to estimate the true spectrum of the underlying process using only the observed data leads to incorrect inference. Instead, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1992
ISSN: 0090-5364
DOI: 10.1214/aos/1176348513